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Abstract

Background: To test the hypothesis that the therapeutic ratio of intensity-modulated photon therapy using helical
tomotherapy (HT) for retreatment of head and neck carcinomas can be improved by robust intensity-modulated
proton therapy (IMPT).

Methods: Comparative dose planning with robust IMPT was performed for 7 patients retreated with HT.

Results: On average, HT yielded dose gradients steeper in a distance < 7.5 mm outside the target (p<0.0001, F-test)
and more conformal high dose regions down to the 50% isodose than IMPT. Both methods proved comparably

robust against set-up errors of up to 2 mm, and normal tissue exposure was satisfactory. The mean body dose was
smaller with IMPT.

Conclusions: IMPT was found not to be uniformly superior to HT and the steeper average dose fall-off around the
target volume is an argument pro HT under the methodological implementations used. However, looking at single

Re-irradiation, Helical tomotherapy

organs at risk, the normal tissue sparing of IMPT can surpass tomotherapy for an individual patient. Therefore,
comparative dose planning is recommended, if both methods are available.
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Background

Re-irradiation of late recurrent head and neck cancer
with concomitant chemotherapy is a curative option for
un-resectable recurrences. However, side effects are
significant. Randomized or prospective uncontrolled
trials with total radiation doses of 60—65 Gy at 1.5 - 2.0 Gy
per fraction with or without concomitant chemotherapy
showed a crude incidence of late grade III or worse
side effects of 34% - 65% [1-4]. For patients with
non-nasopharyngeal head and neck carcinomas treated
within these trials, the predominant late side effects were
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trismus, osteoradionecrosis, subcutaneous fibrosis, late
mucosal side effects, and pharyngeal, laryngeal, esophageal
dysfunctions or carotid ruptures. Highly conformal
techniques are used frequently. In their large retrospective
series, Lee et al. [5] found a higher freedom from
loco-regional progression at 2 years with intensity
modulated photon radiotherapy techniques in comparison
to 3D conformal radiotherapy, indicating that the
therapeutic index in the retreatment of head and neck
cancer can be improved with more conformal techniques.

Recent reviews on proton radiotherapy for head and
neck cancer concluded that protons are able to improve
the therapeutic ratio by significantly decreasing normal
tissue dose, while keeping similar or better target coverage
than current photon techniques, and that scanned
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intensity modulated proton therapy (IMPT) might prove
most advantageous [6,7].

In this study, we review a series of re-irradiated
patients with long term follow-up, treated with helical
tomotherapy (HT). We conducted comparative intensity
modulated proton therapy planning using an advanced
robust optimization algorithm. The planning aim was to
create proton plans reaching or surpassing the good
target volume coverage achieved with HT while offering
better sparing of the surrounding normal tissues.

Methods
For comparative planning with IMPT, 7 patients with
recurrent carcinoma in the head and neck were identified,
who had received a radical retreatment with HT between
January 2009 and September 2010. Median and minimum
time between the start of the first and second treatment
series was 48 months and 37 months, respectively,
allowing partial recovery of potential damage in the CNS
[8]. The total radiation dose, given in the first radiotherapy
series, was 56 — 63 Gy with conventional fractionation. All
patients were immobilized in a frameless precision
head mask system developed for fractionated stereotactic
treatments (BrainLAB AG, Feldkirchen, Germany).
Planning computed tomograms (CT) were obtained
using a large-bore CT scanner (Somatom Sensation Open,
Siemens, Erlangen, Germany). CT slices of 1.5 - 2.0 mm
thickness were reconstructed. A CTV margin of 0.5 - 1.0
cm was applied around the GTV, respecting non-involved
anatomic borders. An isotropic PTV margin of 0.2 cm
was added to the CTV for the HT treatment planning. A
constant relative biological effectiveness (RBE) of 1.0 was
assumed for photons and of 1.1 for protons.

Tomotherapy treatment planning

HT plans were normalized such that 95% of the PTV
was covered by the prescribed dose in 5 patients and
90% of the PTV in two patients. Planning parameter
combinations used were field width (FW) of 1.0 cm with
a pitch of 0.215 (4 patients), FW 1.0 cm with pitch 0.287
(1 patient), and FW 2.5 cm with pitch 0.215 (2 patients),
respectively, depending on the cranio-caudal extent of
the target volume. The dose calculation grid had a size
of 1.95 mm x 1.95 mm in the axial plane. Modulation
factors between 1.6 and 2.4 were obtained. Dose constraints
differed from patient to patient due to the individual nature
of re-irradiation. The planning goal was to keep the
lifetime dose to the spinal cord and brain stem surface
dose below 60 Gy and 64 Gy, respectively [8]. Two patients,
patients 4 and 6, were treated by an integrated boost
technique, increasing the dose to the boost PTV by 25%
and 18.5% in comparison to the larger PTV1, respectively.
All treatments were given in a radical intent. The biologic-
ally equivalent dose (BED) to the tumor was calculated
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according to Ho et al. [9], assuming a fractionation
sensitivity of the tumor characterized by an o/p ratio of 10
Gy, a time delay to onset of compensatory repopulation of
21 d, and a repopulation rate of 0.66 Gy/d thereafter. The
BED for an individual patient was expressed as the
total dose of a conventional fraction schedule at 5x2
Gy / week resulting in the same BED (2 Gy/fraction
equivalent scheme). The intended total radiation dose
was equivalent to > 60 Gy with 2 Gy/d fraction scheme
for each patient, the recommended dose range for
re-irradiation of patients with a response duration of > 6
months according to the American College of Radiology
and the National Comprehensive Cancer Network Guide-
lines [10,11].

Proton therapy planning

Comparative IMPT planning was done using a RayStation
v2.4.13.31 system, developed by RaySearch Laboratories
within a Partnership with the WPE. Robust IMPT
plans were obtained applying a minimax optimization
to account for range- as well as setup-uncertainties
[12]. The optimizer aims at minimizing the objective of
the worst case scenario. Set-up errors were simulated
by moving spot weights to corresponding adjacent
spot positions within the iso-energy layers for each
beam. Density errors were approximated by calculating
dose for several density scalings. For IMPT, set-up errors
of 2 mm were considered as well as range uncertainties
of +3.5%. We investigated potentials of robust IMPT to
create plans superior to HT. Optimization criteria for
IMPT ordered according to importance were: (1) Robust
CTYV coverage at least as good as with HT, (2) Dlcc to the
brain stem or spinal cord equal or smaller, (3) D2 within
the ipsilateral optic nerve or the chiasma opticum equal
or smaller, (4) D2< 115% within the CTV, (5) Dlcc (D5cc)
as well as Dmean for the ipsilateral temporal lobe
(cerebellum) smaller, (6) conformity around the CTV
higher, (7) Dmean to the parotid glands smaller, and (8)
V80 of the lower jaw adjacent to the tumor smaller than
in the HT plan.

Quantitative Analysis of Normal Tissue Effects in the
Clinic (QUANTEC) review states Dmax as appropriate
dose-volume histogram parameter to assess side effect
probabilities in most CNS structures [13]. But as most
of the underlying empirical data was derived from
studies before the IMXT era, we used the D2 criterion or,
if empirically established, the Dlcc - D5cc parameters
for the brain, temporal lobes and brain stem, respectively,
to restrict the high dose area in the CNS during
optimization [13,14].

The beam model used for IMPT optimization is made
for the IBA dedicated pencil beam nozzle. The proton
pencil beam sigma values were 3.66 and 3.00 mm in air
at isocenter at beam energies of 150 and 230 MeV,
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respectively. Energies below 100 MeV were not used.
Additional range shifters were introduced as appropriate
to cover the target volume proximally. The proton beam
scanning grid was 5 mm in both orthogonal directions
within an energy layer and the distance between iso-energy
layers in water was 5 mm.

Multiple field IMPT plans were used for all patients. A 4
fields set up was chosen for patients 3, 5, 6, and 7. A 5, 6,
and 7 fields set up was used for patients 2, 4 and 1,
respectively. For patient 1, the near central PTV neighboring
the brainstem was tangentially approximated by 3 bi-lateral
fields, as well as by a p-a field. Thus, the optimizer had
the freedom to increase spot weights in tangential fields at
the CTV surfaces near critical organs at risk, i.e. the spinal
cord, brain stem, temporal lobes and cerebellum, and to
avoid spots stopping right in front of these organs. For
more lateralised target volumes, as in patients 2—7, two or
three ipsi-lateral fields were used with field normals
tangential to the major parts of the anterior and posterior
surfaces of the target volume. Gantry angels between these
fields ranged from 50° to 100°. For most patients, one
additional field with an intermediary gantry angle between
those fields was used. Furthermore, one field from the
near ap- or pa direction or alternatively a contra-lateral
field was used to cover medial parts of the target volume
without exposure of the spinal cord or brain stem. Dose
conformity was measured by the Paddick conformity index
Clxy = V*V,/(BVx*CTV), where V, is the intersection
volume between the CTV and BVy, the body volume
receiving x% of the prescribed dose. The CTV was used as
reference because the planning aim of both, HT and
IMPT plans was to cover the CTV robustly, but IMPT
plan robustness did not rely on a PTV. To estimate mean
dose gradients outside the PTV, 8 adjacent shells of 1 mm
width were constructed around each PTV1 within the
body volume by isotropic expansion of the PTV1. For
estimation of the dose fall off outside the PTV, the mean
dose or the D90 in each shell was plotted against the
mid-distance of the respective shell from PTV.

Statistical analysis

Pair-wise comparisons of IMPT and HT according to
one parameter from the dose volume histogram (DVH)
of an organ at risk or target volume were performed for
all patients using the signed rank test, Proc Univariate,
SAS statistical software Version 9.2 (Cary, NC). Regression
analyses were performed using the Proc GLM from SAS.

Results

Patients 2, 4, 5 had a recurrent carcinoma of the auditory
canal, while patient 7, and 3 had a recurrent oropharyngeal,
patient 1 a nasopharyngeal, and patient 6 a floor of mouth
carcinoma. The received re-irradiation total 2Gy/fraction
equivalent dose was 56 Gy - 68 Gy. Five patients received
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Cisplatin at 30 mg/m?* weekly, the remaining two refused
chemotherapy. With respect to clinical outcome, no
patient experienced grade 3 late toxicities. Median
follow-up of the seven patients is 39 (31-48) months.
Survival at 36 months is 57%. Figure 1 illustrates dose
distributions achieved with HT and IMPT in the first and
second row, respectively. Dose difference plots are given
in the third row.

Coverage of the CTV

For HT and IMPT, the CTV D95 was equal or larger
than the prescribed dose for all patients except patient 1,
in whom it was > 97.5% of the prescribed dose (Table 1).
In this patient, the smallest distance between CTV and
brainstem fell below 2 mm so that robustness against
set-up errors and fulfillment of strict brain stem were
competitive objectives. Patients 4 and 6 received an
integrated boost, and their plans were normalized to
the prescribed dose in the CTVyees- The prescribed
doses to the larger CTV1 were 84.1% and 80.0% of
the prescribed CTVy,,0s dose, respectively. Robustness
of the IMPT and HT plans was evaluated within
scenarios 1-5, applying a translation of the isocenter
of the beam arrangement against the image data set
of -2.0/2.0/-2.0/2.0/1.5 mm in the ventral, -2.0/2.0/
2.0/-2.0/-1.5 mm in the ipsilateral, and 0.0/ 0.0/ 0.0/0.0/
1.5 mm in the cranial direction. In addition, density
changes by +3%, and -3% were applied to the IMPT plans
in scenario 5. The CTV D95 was found stable within 4%
and did not fall below 98% of the prescribed dose in
6 of the 7 patients for both IMPT and HT. In patient
1 however, D95 decreased to 85.5% for HT and to
89.1% for IMPT. A pairwise comparison of the D95 values
of IMPT and HT over all the set-up errors tested did not
result in significant robustness differences between the
plans for both radiotherapy methods (p=0.13, F-test). The
D2 values for brainstem or spinal cord increased over the
scenarios on average by 3.7% (range, -9.4% - +26%) of the
prescribed dose over the different patients for IMPT and
by 3.1% (range, -8.3% - +19%) for HT with no significant
difference between HT and IMPT (p=0.58, F-test). Unique
to IMPT, density changes of +3% and —3% within the
set-up scenario 5 led to maximum increases of brain stem
D2 by 19% and 15% of the prescription dose in patients 1
and 2, respectively, and stayed constant within 4% in the
other patients in comparison to scenario 5 without density
changes. The D95 for the CTV remained constant within
2% of the prescribed dose for all patients except patient 1,
where it decreased by up to 6.7%.

Conformity

The median CTV volume was 86 c¢cm® (Table 1). The
Paddick conformity indices (CI) at the 95% isodose were
larger for the HT plans in comparison to robust IMPT
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Figure 1 Dose distribution. Dose distributions for patients 1-7 from left to right. Helical tomotherapy (HT) and intensity modulated proton
therapy (IMPT) plans are shown in row 1 and row 2. Corresponding dose difference plots (IMPT minus HT) are given in the third row for the
respective patients.

in 8 of the 9 target volume comparisons, including the
boost volumes given in patients 4 and 6 (p=0.04, signed
rank test). Figure 2a shows the Paddick Clromo/ Clproton
ratio for 9 target volumes of the evaluated patients at
different isodose values between 95% and 20%. The drawn
line is a linear quadratic fit as Taylor series expansion to
the last significant term of this ratio on the isodose level.
The predicted mean value of Clromo/Clproton and its 95%
confidence interval ratio from this fit was >1 from
the 95% isodose down to the 50% isodose, indicating
considerably higher average conformity for HT compared
with IMPT at these higher isodose levels, while robust
IMPT was more conformal for the 30% and lower
isodoses. The shallower average dose fall off in the
IMPT-plans is visualized as a red shell around the CTV in
the dose differences plots of Figure 1, third row. In
addition, we looked at the effect of reducing the range
uncertainties during optimization from +3% to +1.5% on
CI95 of the IMPT plans. The Paddick CI95% was found
stable within +2% without a systematic increase.

Figure 3 illustrates the dose fall-off outside PTV1 for
the 7 patients for HT and IMPT normalized by the
prescribed dose. Mean doses are shown in adjacent shells
of 1 mm width around the PTV1 within the respective
patient’s body. The dose fall-offs were adequately
described by a linear dependence on distance from PTV.
A quadratic term did not become significant. The slopes
were significantly steeper for HT than for IMPT (-5.94 +
0.26%/mm vs. -3.99 t 0.26%/mm, p< 0.0001, F-test).

To give an impression of the steepest dose fall off achieved
around the PTV1, the D90 values in the adjacent 1 mm
shells were analyzed. Again, gradients with HT were
significantly steeper than with IMPT (-8.69 + 0.36%/mm
vs. -7.33 + 0.36%/mm, p< 0.0001, F-test).

Normal tissue exposure

Spinal cord or brainstem exposures were compared by
D2 and Dmax or D, and Dmax as the respective end
points (Table 1). The paired dose differences between
IMPT and HT normalized to the prescription dose were
not significantly different from 0 Gyrgg over all patients
and all 4 parameters related to spinal cord and brainstem
exposure (average difference, -1.6 + 1.0 Gyggg, p=0.073,
signed rank). The normalized dose differences between
IMPT and HT were smaller for the parameters D2 or
D3 (average AD2 or AD3., = -3.7%) as for D,
(average AD . = +0.4%). All plans fulfilled the clinical
criteria, i.e. life time accumulated D, to the spinal cord
and brain stem had to remain below 60 Gygpe and 64
Gyrgg, respectively.

With respect to the ipsilateral optic nerve and the
chiasm, no significant Dy, differences were seen between
the IMPT and HT plans (Table 1). The average AD .y
between both methods was 0.5 + 2.4% of the prescription
dose for the 7 patients (p=0.89).

Ipsilateral temporal lobe and cerebellum exposures
were evaluated by Dmean, and one parameter related to
the hot spots in this structure, either D3, or D.,,. The
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Table 1 Dose volume parameters
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Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7
Proton / Proton / Proton / Proton / Proton / Proton / Proton /
Photon Photon Photon Photon Photon Photon Photon
cTVv 71 197
60 33 97 127 115
11 66
Paddick Cl95 046/ 0.71 0.78/0.74
0.83/093 046 /0.58 0.57 /066 —_— 069 /0.79 —_— 0.69/0.71
0.21/046 0.58 /064
D98 86.2 / 85.7 79.0/82.1
86.5/912 100.6 / 102.0 100.9 / 994 —_— 99.9 /999 —_— 1004/ 101.8
1013/ 100.5 104.7 / 101.3
D95 884 /855 80.9/828
975/ 985 1020/ 1023 101.1/99.7 _— 1012/ 100.5 _— 1004 / 102.1
1014 /1008 101.2/103.2
D50 956/ 899 916/ 882
1044/ 105.3 105.3/103.8 1038/ 101.3 —_— 1052 /102.6 S 1040/ 103.3
104.2 / 102.0 104.7 / 104.7
D2-D98 266/ 159 2457208
3037165 135/ 4.1 92/42 _ 122 /50 N — 99 /34
162/32 84 /34
Spinal Cord
D2 87/48 92 /144 26/97 47/59 53/132 85/87 13,7/19.3
Dmax 166/ 82 135/187 102/16.0 144 /137 1337187 154 /133 25.0/ 281
Brain stem
Dlcc 188 /216 410/ 450 116/119 143 /165 306 /46,5 38/50 47 /6.2
Dmax 38.5 /400 795/ 787 301 /227 335/250 61.6/64.5 82/90 13.6 /106
ipsilat. Optic Nerve
Dmax 3257138 226/ 26.1 119/38 39/24 28/ 186 00/16 00/12
Chiasma Opticum
Dmax 187/ 154 28.1/15.1 08734 63/27 207160 00/14 00/12
Temporal Lobes
ipsilat. Dmean 179/ 219 544 /509 59/107 286/ 155 473/ 57.1 03/16 07/12
ipsilat. D1cc 7257777 983 /998 320/ 346 86.1/76.1 106.8 / 100.8 28/ 3.1 0.1/21
contoured Cerebellum
Dmean 90/184 133/ 262 05/98 9.1/164 11.1 /321 02/25 01/14
D5cc 539/537 69.7 / 60.7 37/217 520/472 74.1 /679 20/94 12/28
Parotid Glands
Dmean 3737269 30/45 176/ 330 12/79 00/48 24.3 /390 487 / 47.8
contoured Jaw
V80 06/0.1 4.1/22 11.2/115 166 / 10.5 78/67 57/60 93/10.1
Dmean 130/ 74 86/84 209/ 244 359/343 1237156 342 /480 254 /394
scanned Body
Dmean 102/ 111 69/95 72797 44/ 44 32/57 37/53 36/49
V95 89/83 73/ 57 171/ 147 156 / 100 186/ 161 254/ 266 167 /162
Vo0 108 / 92 87 /64 193 /167 178 /112 205 /177 281/ 291 190 / 180
V80 143/ 112 114/ 77 234 /200 221 /132 247 / 207 337/343 231/ 212
PTV 81 49 124 92 152 246 147
17 92

Dose volume parameters related to target coverage, homogeneity and the exposure of normal tissues by helical tomotherapy (Photon) and intensity modulated
proton therapy (Proton). All doses were given in percent of the prescribed dose, all volumes in cm®. Patients 4 and 6 were treated by an integrated boost
technique and their plans were normalized to the prescribed boost dose. For these two patients, the respective cells for the D2 to D98 values were split and the

values for the boost clinical target volume (CTV) were given in the lower half and for the larger CTV1 in the upper half of the cell.
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Figure 2 Conformity indices. Ratio of the Paddick conformity
indices for helical tomotherapy (Cltomo) and intensity modulated
proton therapy (Clproton) plans for all target volumes of this study.
The ratios are given for isodose values from 95% to 20% of the
prescribed dose. Data points related to the same target volume are
connected by grey lines. The average dependence of the conformity
index ratio on isodose was estimated by linear quadratic Taylor
series expansion (black solid curve). The 95% confidence intervals of
the predicted mean isodoses by this fit are drawn as black

vertical bars.

normalized Dmean differences between IMPT and HT
for ipsilateral temporal lobes were not different from 0%
(average ADpean = 0.5 + 2.8%; p=0.58, signed rank test),
neither was the D3, (average AD3., = 0.6 + 2.0%;
p=0.94). The average ADc., for the cerebellum was lower

-

100

90

80

70

60

50

mean normalised dose at distance [%]

40 " 1 M 1 N 1 N 1 N 1 " 1 N 1 N
0 1 2 3 4 5 6 7 8

distance from PTV [mm]

Figure 3 Dose fall-off. Dose fall-off outside planning target volume
for helical tomotherapy (HT) (blue) and intensity modulated proton
therapy (IMPT) (grey). Mean doses in adjacent shells of 1 mm width
around the planning target volume (PTV) within the respective
patient’s body are given normalized to the prescribed dose. The
slopes of the average dose fall-off differed between HT and IMPT
(p< 0.0001). In addition, the 95% confidence intervals for the
predicted dose values at a given distance are indicated by

vertical bars.
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with IMPT (-9.1 + 2.5%, p=0.02), the average AD3,,, for
the patients of this study was not (1.0 + 3.5%, p=0.99).

In addition, the average Dmean difference of the parotid
gland exposure was —4.5 + 3.4% (p=0.22). Mean body dose
by IMPT was lower in 6 patients and equal in 1 patient
compared with HT, on average by 1.6 + 0.4% of the
prescribed dose (p=0.03).

Discussion
Considering target coverage, safety margins alone cannot
ensure dose coverage of the CTV for IMPT plans with
multiple fields and high in-field dose gradients. Deviations
in the position of these dose gradients in the patient from
field to field due to set-up errors or range uncertainties
can result in under- or overdosage inside the PTV [15,16].
Therefore robust planning was employed to optimize the
dose distribution simultaneously for multiple scenarios
mimicking set-up errors and range uncertainties and
minimizing the penalty of the worst case scenario [12]. Ro-
bust optimization can lead to treatment plans considerably
less sensitive to set-up errors and range uncertainties than
IMPT plans optimized using PTV-based conventional
methods. In addition, robust IMPT optimization was
able to result in higher conformity than margin-based
IMPT optimization methods [17]. HT and IMPT with
small pencil beams had similar target coverage and
robustness against set-up errors within 2 mm. Highly
constrained IMPT plans showed some residual dependence
of brainstem D2 on range uncertainties. Consideration of
a set-up error of 2 mm seems adequate for small targets
in the head and neck region with daily online navigation
[18]. While on average the HT plans in our comparison
showed a higher conformity around the CTV in the high
dose region down to 50% of the prescribed dose or within
7.5 mm around the PTV, IMPT plans had a reduced low
dose bath at isodoses below 50%. Similarly, Seco in 2011
reported of larger high dose regions with passively
scattered protons in comparison to photon stereotactic
body radiotherapy for smaller stage I lung cancer [19].
IMPT for cancers of the head and neck region was
investigated in previous studies in comparison to fixed
field or rotational IMXT [20-25]. These studies used a
PTV margin based concept to consider set-up errors for
proton therapy and none used robust optimization. All
of these studies used 2-3 field IMPT plans. Four of
these studies employed fixed-field IMXT, four HT for
comparison with IMPT [20,23,25,26]. While all of the
studies using fixed-field IMXT found that IMPT had a
greater potential to spare adjacent normal tissues, the
studies using HT for comparison found similar conformity
and normal tissue exposure. These studies included only
1, 1, 3, and 6 patients, respectively. The target volumes in
the latter studies, however, tended to be larger than in the
present study. The target conformity of the HT plans in
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the present study compared well with the photon plans in
most of the above studies [21,24,25], and the present study
extends the comparison of IMPT and HT to smaller
complex target volumes and nearby organs at risk, using
robust IMPT optimization. Four of the above studies gave
the ICRU conformity index at the 95% isodose (CI95%)
(ICRU reports 50 and 62) around the PTV for their
IMPT plans [21,22,24,25]. The mean CI95% ranged
from 1.02 - 1.40. In the present study, the average
CI95% was 1.29 + 0.24 with IMPT, a value in the middle
range of the above studies. But the median target volume
in this study was smaller than in most of the above
studies. It is well known that the CI decreases and
therefore conformity improves for a considered radio-
therapy method with increasing target volumes [27]. The
robustness of the D95 for CTV-coverage against set-up
errors was found similar for robust IMPT and HT. While
adequate brain, brainstem and spinal cord sparing could
be achieved with IMPT at the level preset by the HT plans,
temporal lobe doses and optic nerve doses were not
substantially different on average. Dy,c.n but not Bitte
Dlcm3 wie auf der vorhergehenden Seite: cm tief, 3
hoch gesetzt. to the cerebellum and the mean body dose
were lower on average with IMPT for the patients of this
study. Comparing HT with other rotational IMRT methods
such as volumetric modulated arc therapy showed a similar
conformity that was superior to static field IMRT so that
the results here in comparison to HT can be generalized
to rotational IMRT methods with photons [28].

In the re-irradiation situation, it can be difficult to weight
the better high dose conformity of HT against the reduced
low dose exposure by IMPT. Several of the severe side
effects that can be consequence of re-irradiation, such as
trismus, osteoradionecrosis, subcutaneous fibrosis, brain
stem necrosis, and cranial neuropathy and carotid rupture
seem to be related rather to the volume of the high
dose region than the low dose bath of radiotherapy
below the 50% isodose [13,29,30]. If steep dose gradients
in the near vicinity of the target volume are of dominant
concern, rotational IMRT is a particularly good radiotherapy
solution. The known issue of difficult skin sparing with
IMPT, relevant for superficially located target volumes
such as head and neck lymph node regions, was not
considered in the comparison of the methods.

The conformity of both methods, rotational IMXT and
IMPT, has potential to be improved in the future. Avenues
for possible further improvements with IMPT for shallow
depth head and neck carcinomas include using smaller
pencil beam width especially at low energies allowing for
treatments without range shifters, smaller air gaps,
and further refinement of robust optimization using e.g.
contour-related spot placing and spacing. Conformity with
rotational IMXT can be improved for instance by smaller
jaw width, smaller pitch and higher modulation factor
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in the case of helical therapy and the use of small
penumbra micromultileaf collimators, use of noncoplanar,
multiple arcs in the case of C-arm linear accelerators, or
the use of multiple degrees of freedom robotic systems for
beam delivery.

Conclusion

Potentials of intensity modulated proton therapy plans
using robust optimization were investigated under set-up
and range uncertainty conditions. While HT showed on
average a higher conformity down to the 50% isodose and
steeper dose gradients within 7.5 mm outside the PTV in
the high dose region, IMPT had a reduced low dose
bath. Because neither of the two methods, IMPT or HT,
was found uniformly better in terms of target coverage
and organs at risk sparing, comparative planning is
recommended for the individual patient in the clinical
situation of retreatment of recurrent head and neck cancer,
provided both methods are available.
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