Email updates

Keep up to date with the latest news and content from Radiation Oncology and BioMed Central.

Open Access Methodology

Technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation

Mark W McDonald12*, Mark R Wolanski12, Joseph W Simmons2 and Jeffrey C Buchsbaum12

Author Affiliations

1 Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA

2 Indiana University Health Proton Therapy Center, Bloomington, IN, USA

For all author emails, please log on.

Radiation Oncology 2013, 8:14  doi:10.1186/1748-717X-8-14

Published: 12 January 2013



Cranial reirradiation is clinically appropriate in some cases but cumulative radiation dose to critical normal structures remains a practical concern. The authors developed a simple technique in 3D conformal proton craniospinal irradiation (CSI) to block organs at risk (OAR) while minimizing underdosing of adjacent target brain tissue.


Two clinical cases illustrate the use of proton therapy to provide salvage CSI when a previously irradiated OAR required sparing from additional radiation dose. The prior radiation plan was coregistered to the treatment planning CT to create a planning organ at risk volume (PRV) around the OAR. Right and left lateral cranial whole brain proton apertures were created with a small block over the PRV. Then right and left lateral “inverse apertures” were generated, creating an aperture opening in the shape of the area previously blocked and blocking the area previously open. The inverse aperture opening was made one millimeter smaller than the original block to minimize the risk of dose overlap. The inverse apertures were used to irradiate the target volume lateral to the PRV, selecting a proton beam range to abut the 50% isodose line against either lateral edge of the PRV. Together, the 4 cranial proton fields created a region of complete dose avoidance around the OAR. Comparative photon treatment plans were generated with opposed lateral X-ray fields with custom blocks and coplanar intensity modulated radiation therapy optimized to avoid the PRV. Cumulative dose volume histograms were evaluated.


Treatment plans were developed and successfully implemented to provide sparing of previously irradiated critical normal structures while treating target brain lateral to these structures. The absence of dose overlapping during irradiation through the inverse apertures was confirmed by film. Compared to the lateral X-ray and IMRT treatment plans, the proton CSI technique improved coverage of target brain tissue while providing the least additional radiation dose to the previously irradiated OAR.


Proton craniospinal irradiation can be adapted to provide complete sparing of previously irradiated OARs. This technique may extend the option of reirradiation to patients otherwise deemed ineligible for further radiotherapy due to prior dose to critical normal structures.

Proton therapy; Craniospinal irradiation; Reirradiation; Treatment planning