Email updates

Keep up to date with the latest news and content from Radiation Oncology and BioMed Central.

Open Access Research

First steps towards a fast-neutron therapy planning program

Sylvia Garny12*, Werner Rühm1, Maria Zankl1, Franz M Wagner3 and Herwig G Paretzke1

Author Affiliations

1 Helmholtz Zentrum München, Institut für Strahlenschutz, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany

2 Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Klinikum der LMU München, Campus Großhadern, Marchioninistraße 15, 81377 München, Germany

3 Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Garching, Germany

For all author emails, please log on.

Radiation Oncology 2011, 6:163  doi:10.1186/1748-717X-6-163

Published: 25 November 2011

Abstract

Background

The Monte Carlo code GEANT4 was used to implement first steps towards a treatment planning program for fast-neutron therapy at the FRM II research reactor in Garching, Germany. Depth dose curves were calculated inside a water phantom using measured primary neutron and simulated primary photon spectra and compared with depth dose curves measured earlier. The calculations were performed with GEANT4 in two different ways, simulating a simple box geometry and splitting this box into millions of small voxels (this was done to validate the voxelisation procedure that was also used to voxelise the human body).

Results

In both cases, the dose distributions were very similar to those measured in the water phantom, up to a depth of 30 cm. In order to model the situation of patients treated at the FRM II MEDAPP therapy beamline for salivary gland tumors, a human voxel phantom was implemented in GEANT4 and irradiated with the implemented MEDAPP neutron and photon spectra. The 3D dose distribution calculated inside the head of the phantom was similar to the depth dose curves in the water phantom, with some differences that are explained by differences in elementary composition. The lateral dose distribution was studied at various depths. The calculated cumulative dose volume histograms for the voxel phantom show the exposure of organs at risk surrounding the tumor.

Conclusions

In order to minimize the dose to healthy tissue, a conformal treatment is necessary. This can only be accomplished with the help of an advanced treatment planning system like the one developed here. Although all calculations were done for absorbed dose only, any biological dose weighting can be implemented easily, to take into account the increased radiobiological effectiveness of neutrons compared to photons.